Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Theranostics ; 12(11): 5237-5257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836799

RESUMO

Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Idoso , Animais , Cálcio/metabolismo , Senescência Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
Cardiovasc Res ; 118(4): 1020-1032, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33792692

RESUMO

AIMS: Diabetic cardiomyopathy is a multifactorial disease characterized by an early onset of diastolic dysfunction (DD) that precedes the development of systolic impairment. Mechanisms that can restore cardiac relaxation improving intracellular Ca2+ dynamics represent a promising therapeutic approach for cardiovascular diseases associated to DD. Istaroxime has the dual properties to accelerate Ca2+ uptake into sarcoplasmic reticulum (SR) through the SR Ca2+ pump (SERCA2a) stimulation and to inhibit Na+/K+ ATPase (NKA). This project aims to characterize istaroxime effects at a concentration (100 nmol/L) marginally affecting NKA, in order to highlight its effects dependent on the stimulation of SERCA2a in an animal model of mild diabetes. METHODS AND RESULTS: Streptozotocin (STZ) treated diabetic rats were studied at 9 weeks after STZ injection in comparison to controls (CTR). Istaroxime effects were evaluated in vivo and in left ventricular (LV) preparations. STZ animals showed (i) marked DD not associated to cardiac fibrosis, (ii) LV mass reduction associated to reduced LV cell dimension and T-tubules loss, (iii) reduced LV SERCA2 protein level and activity and (iv) slower SR Ca2+ uptake rate, (v) LV action potential (AP) prolongation and increased short-term variability (STV) of AP duration, (vi) increased diastolic Ca2+, and (vii) unaltered SR Ca2+ content and stability in intact cells. Acute istaroxime infusion (0.11 mg/kg/min for 15 min) reduced DD in STZ rats. Accordingly, in STZ myocytes istaroxime (100 nmol/L) stimulated SERCA2a activity and blunted STZ-induced abnormalities in LV Ca2+ dynamics. In CTR myocytes, istaroxime increased diastolic Ca2+ level due to NKA blockade albeit minimal, while its effects on SERCA2a were almost absent. CONCLUSIONS: SERCA2a stimulation by istaroxime improved STZ-induced DD and intracellular Ca2+ handling anomalies. Thus, SERCA2a stimulation can be considered a promising therapeutic approach for DD treatment.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Cálcio/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Etiocolanolona/análogos & derivados , Etiocolanolona/metabolismo , Etiocolanolona/farmacologia , Etiocolanolona/uso terapêutico , Ratos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Front Cardiovasc Med ; 8: 750510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820429

RESUMO

Despite the increasing success of interventional coronary reperfusion strategies, mortality related to acute myocardial infarction (MI) is still substantial. MI is defined as sudden death of myocardial tissue caused by an ischemic episode. Ischaemia leads to adverse remodelling in the affected myocardium, inducing metabolic and ionic perturbations at a single cell level, ultimately leading to cell death. The adult mammalian heart has limited regenerative capacity to replace lost cells. Identifying and enhancing physiological cardioprotective processes may be a promising therapy for patients with MI. Studies report an increasing amount of evidence stating the intricacy of the pathophysiology of the infarcted heart. Besides apoptosis, other cellular phenotypes have emerged as key players in the ischemic myocardium, in particular senescence, inflammation, and dedifferentiation. Furthermore, some cardiomyocytes in the infarct border zone uncouple from the surviving myocardium and dedifferentiate, while other cells become senescent in response to injury and start to produce a pro-inflammatory secretome. Enhancing electric coupling between cardiomyocytes in the border zone, eliminating senescent cells with senolytic compounds, and upregulating cardioprotective cellular processes like autophagy, may increase the number of functional cardiomyocytes and therefore enhance cardiac contractility. This review describes the different cellular phenotypes and pathways implicated in injury, remodelling, and regeneration of the myocardium after MI. Moreover, we discuss implications of the complex pathophysiological attributes of the infarcted heart in designing new therapeutic strategies.

4.
Front Physiol ; 12: 658790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897465

RESUMO

BACKGROUND: Combined treatment with anthracyclines (e.g., doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2) antibody, in patients with HER2-positive cancer is limited by cardiotoxicity, as manifested by contractile dysfunction and arrhythmia. The respective roles of the two agents in the cardiotoxicity of the combined therapy are incompletely understood. OBJECTIVE: To assess cardiac performance, T-tubule organization, electrophysiological changes and intracellular Ca2+ handling in cardiac myocytes (CMs) using an in vivo rat model of Dox/Trz-related cardiotoxicity. METHODS AND RESULTS: Adult rats received 6 doses of either Dox or Trz, or the two agents sequentially. Dox-mediated left ventricular (LV) dysfunction was aggravated by Trz administration. Dox treatment, but not Trz, induced T-tubule disarray. Moreover, Dox, but not Trz monotherapy, induced prolonged action potential duration (APD), increased incidence of delayed afterdepolarizations (DADs) and beat-to-beat variability of repolarization (BVR), and slower Ca2+ transient decay. Although APD, DADs, BVR and Ca2+ transient decay recovered over time after the cessation of Dox treatment, subsequent Trz administration exacerbated these abnormalities. Trz, but not Dox, reduced Ca2+ transient amplitude and SR Ca2+ content, although only Dox treatment was associated with SERCA downregulation. Finally, Dox treatment increased Ca2+ spark frequency, resting Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and long-lasting Ca2+ release events (so-called Ca2+ "embers"), partially reproduced by Trz treatment. CONCLUSION: These results suggest that in vivo Dox but not Trz administration causes T-tubule disarray and pronounced changes in electrical activity of CMs. While adaptive changes may account for normal AP shape and reduced DADs late after Dox administration, subsequent Trz administration interferes with such adaptive changes. Intracellular Ca2+ handling was differently affected by Dox and Trz treatment, leading to SR instability in both cases. These findings illustrate the specific roles of Dox and Trz, and their interactions in cardiotoxicity and arrhythmogenicity.

5.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941149

RESUMO

Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
6.
Cardiovasc Res ; 116(6): 1147-1160, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504264

RESUMO

AIMS: Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS: Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS: Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.


Assuntos
Potenciais de Ação/genética , Fibrilação Atrial/genética , Canais de Cálcio Tipo L/genética , Frequência Cardíaca/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Resistência a Medicamentos/genética , Predisposição Genética para Doença , Frequência Cardíaca/efeitos dos fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Pessoa de Meia-Idade , Irmãos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...